Exploring an Inequality

Introduction

I have attempted to give a mathematical proof of the following inequality,

a1+b+b1+c+c1+d+d1+a2,

where a, b, c and d are all in the range [0, 1], but no success. So in this note I explore the above inequality using the power of computation.

Exploring

Define function

f(a, b, c, d)=a1+b+b1+c+c1+d+d1+a,

where a, b, c and d are all in the range [0, 1].

Method 1

Calculate values of the above function for some given values of a, b, c and d, and then give a summary.

R code:

library(dplyr)
f <- function(a, b, c, d)
{a/(1+b) + b/(1+c) + c/(1+d) + d/(1+a)
}
n <- 10
df <- 
  expand.grid(a = seq(0, 1, length.out = n), 
              b = seq(0, 1, length.out = n),
              c = seq(0, 1, length.out = n), 
              d = seq(0, 1, length.out = n)) %>% 
  mutate(the_f_value = f(a, b, c, d))
(summary(df$the_f_value))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.212   1.442   1.399   1.632   2.000

NB: To save running time, I set n=10; in practice n should be large, say n=100.

Method 2

Use base::optim to find the maximum of the function f().

g <- function(x)
{x[1]/(1 + x[2]) + x[2]/(1 + x[3]) + x[3]/(1 + x[4]) + x[4]/(1 + x[1])
}
(re <- optim(par = c(0, 0, 0, 0), fn = g, method = "L-BFGS-B",
             lower = rep(0, 4), upper = rep(1, 4), 
             control = list(fnscale = -1)))
## $par
## [1] 1 1 1 1
## 
## $value
## [1] 2
## 
## $counts
## function gradient 
##        2        2 
## 
## $convergence
## [1] 0
## 
## $message
## [1] "CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL"

NB:

  • To use base::optim, we must define f in the way like g in the above.
  • In the par, we set an initial value.
  • control = list(fnscale = -1) is used because we want to find the maximum rather than the minimum.
Lingyun Zhang (张凌云)
Lingyun Zhang (张凌云)
Design Analyst

I have research interests in Statistics, applied probability and computation.