A Conjecture
Introduction
I wrote this post Exploring an Inequality last month, and I still don’t have a mathematical proof of the inequality. This shows that my maths ability is not strong 😢!
In this post, I will present a conjecture related to the inequality from the previous post. I have investigated the conjecture and I am confident that it holds true.
A conjecture
Let
Define
Then
When
R code
library(combinat) # for permn
helper_func <- function(func_name, para = NULL, n)
{switch(func_name,
"runif" = runif(n, min = para[['min']], max = para[['max']]),
"rchisq" = rchisq(n, df = para[['df']]),
"rexp" = rexp(n),
"rnorm" = rnorm(n))
}
a_simu <- function(rand_nbr_func, para, n)
{the_nbrs <- helper_func(rand_nbr_func, para, n)
a_list <- permn(the_nbrs)
op <- function(x) {sum(x / (1 + the_nbrs))}
re <- vapply(a_list, op, FUN.VALUE = numeric(1))
return(min(re) == re[1])
}
set.seed(12345)
N <- 10000
# testing the case n = 3 --------------------------------------------------
# test 1
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "runif",
para = list('min' = 0, 'max' = 1),
n = 3))
(sum(simu_re) == N)
## [1] TRUE
# test 2
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "runif",
para = list('min' = 0, 'max' = 100),
n = 3))
(sum(simu_re) == N)
## [1] TRUE
# test 3
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "rexp", n = 3))
(sum(simu_re) == N)
## [1] TRUE
# test 4
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "rchisq",
para = list('df' = 10),
n = 3))
(sum(simu_re) == N)
## [1] TRUE
# test 5: Can we remove the assumption of "non-negative"
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "rnorm", n = 3))
(sum(simu_re) == N)
## [1] FALSE
# testing the case n = 4 --------------------------------------------------
# test 1
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "runif",
para = list('min' = 0, 'max' = 1),
n = 4))
(sum(simu_re) == N)
## [1] TRUE
# test 2
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "runif",
para = list('min' = 0, 'max' = 100),
n = 4))
(sum(simu_re) == N)
## [1] TRUE
# test 3
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "rexp", n = 4))
(sum(simu_re) == N)
## [1] TRUE
# test 4
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "rchisq",
para = list('df' = 10),
n = 4))
(sum(simu_re) == N)
## [1] TRUE
# testing the case n = 5 --------------------------------------------------
# test 1
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "runif",
para = list('min' = 0, 'max' = 1),
n = 5))
(sum(simu_re) == N)
## [1] TRUE
# test 2
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "runif",
para = list('min' = 0, 'max' = 100),
n = 5))
(sum(simu_re) == N)
## [1] TRUE
# test 3
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "rexp", n = 5))
(sum(simu_re) == N)
## [1] TRUE
# test 4
simu_re <- replicate(n = N, a_simu(rand_nbr_func = "rchisq",
para = list('df' = 10),
n = 5))
(sum(simu_re) == N)
## [1] TRUE
Update on 28 October 2024
I sent the conjecture to Dr. Petros Hadjicostas. He quickly gave a proof as follows.
Let