Another Proof of $(n+1)^n < n^{n+1}$
Introduction
Inspired by Sikiric’s post (URL: https://qr.ae/psOuMB), I write down another proof of
$$ (n+1)^n < n^{n+1}, $$
where $n$ is a positive integer and $n\ge 3$.Proof
It’s equivalent to show that
$$ n\ln(n+1) < (n+1)\ln(n), $$
which is equivalent to$$ \frac{\ln(n+1)}{n+1} < \frac{\ln(n)}{n}. $$
Let's consider function$$ f(x)=\frac{\ln(x)}{x}. $$
Taking derivative, we have$$ f^{\prime}(x)=\frac{1-\ln(x)}{x^2} < 0,\ \hbox{if}\ x > e. $$
If $n\ge 3$, then $n > e$. Thus,$$ \frac{\ln(n+1)}{n+1} < \frac{\ln(n)}{n}. $$
That is,$$ n\ln(n+1) < (n+1)\ln(n); $$
the proof is completed.